Using Blockchain and smart contracts for secure data provenance management
نویسندگان
چکیده
Blockchain technology has evolved from being an immutable ledger of transactions for cryptocurrencies to a programmable interactive environment for building distributed reliable applications. Although, blockchain technology has been used to address various challenges, to our knowledge none of the previous work focused on using blockchain to develop a secure and immutable scientific data provenance management framework that automatically verifies the provenance records. In this work, we leverage blockchain as a platform to facilitate trustworthy data provenance collection, verification and management. The developed system utilizes smart contracts and open provenance model (OPM) to record immutable data trails. We show that our proposed framework can efficiently and securely capture and validate provenance data, and prevent any malicious modification to the captured data as long as majority of the participants are honest.
منابع مشابه
Towards an Ontology-Driven Blockchain Design for Supply Chain Provenance
An interesting research problem in our age of Big Data is that of determining provenance. Granular evaluation of provenance of physical goods--e.g. tracking ingredients of a pharmaceutical or demonstrating authenticity of luxury goods--has often not been possible with today's items that are produced and transported in complex, inter-organizational, often internationally-spanning supply chains. ...
متن کاملBlindly Signed Contracts: Anonymous On-Blockchain and Off-Blockchain Bitcoin Transactions
Although Bitcoin is often perceived to be an anonymous currency, research has shown that a user’s Bitcoin transactions can be linked to compromise the user’s anonymity. We present solutions to the anonymity problem for both transactions on Bitcoin’s blockchain and off the blockchain (in so called micropayment channel networks). We use an untrusted third party to issue anonymous vouchers which u...
متن کاملBlockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids
In this paper, we investigate the use of decentralized blockchain mechanisms for delivering transparent, secure, reliable, and timely energy flexibility, under the form of adaptation of energy demand profiles of Distributed Energy Prosumers, to all the stakeholders involved in the flexibility markets (Distribution System Operators primarily, retailers, aggregators, etc.). In our approach, a blo...
متن کاملTLS-N: Non-repudiation over TLS Enabling - Ubiquitous Content Signing for Disintermediation
An internet user wanting to share observed content is typically restricted to primitive techniques such as screenshots, web caches or share button-like solutions. These acclaimed proofs, however, are either trivial to falsify or require trust in centralized entities (e.g., search engine caches). This motivates the need for a seamless and standardized internet-wide non-repudiation mechanism, all...
متن کاملFindel: Secure Derivative Contracts for Ethereum
Blockchain-based smart contracts are considered a promising technology for handling financial agreements securely. In order to realize this vision, we need a formal language to unambiguously describe contract clauses. We introduce Findel – a purely declarative financial domain-specific language (DSL) well suited for implementation in blockchain networks. We implement an Ethereum smart contract ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.10000 شماره
صفحات -
تاریخ انتشار 2017